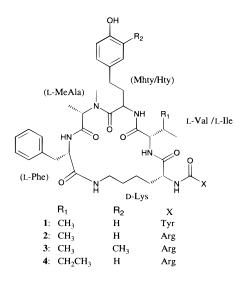
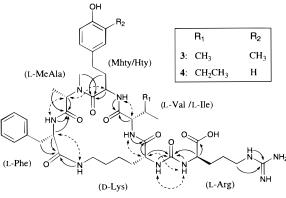
Anabaenopeptins E and F, Two New Cyclic Peptides from the Cyanobacterium *Oscillatoria agardhii* (NIES-204)


Hee Jae Shin, Hisashi Matsuda, Masahiro Murakami,* and Katsumi Yamaguchi

Laboratory of Marine Biochemistry, Graduate School of Agricultural Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113, Japan

Received August 26, 1996[®]


Anabaenopeptins E and F, two new ureido bond-containing cyclic peptides, were isolated from the cultured cyanobacterium *Oscillatoria agardhii* (NIES-204). The gross structures of anabaenopeptins E (**3**) and F (**4**) were elucidated by extensive 2D NMR techniques and chemical degradation. The absolute stereochemistry of usual amino acids in **3** and **4** was determined by GC and HPLC analyses.

Anabaenopeptins A (1) and B (2) were first isolated as a minor group of bioactive compounds from the cyanobacterium Anabaena flos-aquae NRC 525-17, and produced concentration-dependent relaxations in rat aortic preparations with endothelium precontracted with 0.1 μ M norepinephrine.¹ In our continuing search for protease inhibitors from cyanobacteria,² we also isolated anabaenopeptin B (2) from the cultured Oscillatoria agardhii Gomont (NIES-204, Oscillatoriales, Oscillatoriaceae).³ Further investigation of the extract of O. agardhii resulted in the isolation of two new congeners, anabaenopeptins E (3) and F (4). We report here their isolation and structure elucidation.

The freeze-dried cyanobacterial cells were extracted with 80% MeOH, and the extract was partitioned between *n*-BuOH and H₂O. The *n*-BuOH layer was subjected to ODS flash chromatography and eluted with aqueous MeOH and CH₂Cl₂. The 70% MeOH-eluted fraction was purified by reversed-phase HPLC on an ODS column (linear gradient of CH₃CN in H₂O containing 0.05% TFA, 30–80%) to yield anabaenopeptins E (**3**) and F (**4**) along with the known compound, anabaenopeptin B (**2**).

Anabaenopeptin E (3) was isolated as a colorless, amorphous powder from the cultured cyanobacterium

Figure 1. Important HMBC (half arrows) and NOESY (dashed arrows) correlations for anabaenopeptins E (**3**) and F (**4**) in DMSO- d_6 .

O. agardhii in the yield of 0.018%: $[\alpha]^{20}$ _D -52.7° (*c* 0.2, MeOH); UV (MeOH) λ max (log ϵ) 280 nm (3.25). The molecular formula of **3** was deduced as C₄₂H₆₃N₁₀O₉ by HRFABMS $[m/2851.4763 (M + H)^+ \Delta - 1.8 \text{ mmu}]$ and NMR spectral data. Amino acid analysis of the acid hydrolysate of **3** revealed the presence of one residue each of Phe, Val, Lys, Arg, and two unknown amino acids. Extensive NMR analyses of **3** including ${}^{1}H{}^{-1}H$ COSY, HMQC,⁴ HMBC,⁵ and HOHAHA⁶ spectra indicated the presence of the above-mentioned amino acid residues together with N-methylalanine (MeAla) and 7-methylhomotyrosine (Mhty) structural units. A fragment peak in the negative ion FABMS (m/z 675, [M – $Arg - H_2O - H]^-$) also indicated the presence of Arg. The peptidic nature of **3** was suggested by its ¹H- and ¹³C-NMR spectra, showing seven amide protons, six amide carbonyl groups, one ureido carbonyl group, one guanidine group, and four non-protonated signals, as shown in Table 1. The cyclic pentapeptide moiety of **3** was determined as cyclo-(Phe-MeAla-Mhty-Val-Lys) by interresidue correlations in the HMBC spectrum (Phe NH/MeAla CO, MeAla N-Me/Mhty CO, Mhty NH/Val CO, Val NH/Lys CO, Lys ϵ -NH/Phe CO) and NOESY spectrum (Phe NH/MeAla α -H, MeAla α -H/Mhty α -H, Mhty NH/Val α -H, Val NH/Lys α -H, Lys ϵ -NH/Phe α -H). The remaining Arg residue was attached to Lys through an unusual ureido linkage, which was confirmed by the NOESY correlations (Arg $\alpha\text{-}NH/Lys$ $\alpha\text{-}NH,$ Arg $\alpha\text{-}NH/$ Lys α -H) as well as HMBC cross peaks of Arg α -H/ ureido CO (δ C 157.3) and Lys α -H/ureido CO. It was also established by HMBC that the free carboxy group was present in the Arg group (Figure 1).

^{*} To whom correspondence should be addressed. Phone: 81-3-3812-2111 ext. 5298. FAX: 81-3-5684-0622. E-mail: amura@hongo.ecc.utokyo.ac.jp.

[®] Abstract published in Advance ACS Abstracts, January 1, 1997.

	anabaenopeptin E (3)			anabaenopeptin F (4)			
units	no.	¹³ C (mult ^a)	¹ H (mult, $J =$ Hz)	units	no.	¹³ C (mult ^a)	¹ H (mult, $J =$ Hz)
Phe	1	170.8 (s)		Phe	1	170.8 (s)	
	2	54.9 (d)	4.39 (ddd, 12.7, 8.8, 3.4)		2	54.9 (d)	4.38 (ddd, 12.7, 8.8, 3.4)
	3	37.5 (t)	2.77 (dd, 13.9, 12.7)		3	37.5 (t)	2.77 (dd, 13.9, 12.7)
			3.32 (dd, 13.9, 3.4)				3.32 (dd, 13.9, 3.4)
	4	138.3 (s)			4	138.2 (s)	
	5, 9	128.9 (d)	7.06 (d, 7.0)		5, 9	128.8 (d)	7.05 (d, 7.4)
	6, 8	128.3 (d)	7.18 (m)		6, 8	128.3 (d)	7.18 (m)
	7	126.1 (d)	7.13 (m)		7	126.1 (d)	7.14 (m)
	NH		8.69 (d, 8.8)		NH		8.67 (d, 8.8)
MeAla	1	169.9 (s)		MeAla	1	169.8 (s)	
	2	54.3 (d)	4.83 (q, 6.7)		2	54.2 (d)	4.78 (q, 6.7)
	3	13.8 (q)	1.07 (d, 6.7)		3	13.8 (q)	1.05 (d, 6.7)
	N-Me	27.0 (q)	1.78 (s)		N-Me	27.0 (q)	1.76 (s)
Mhty	1	170.9 (s)		Hty	1	170.9 (s)	
	2	48.7 (d)	4.73 (ddd, 7.9, 5.4, 5.4)		2	48.7 (d)	4.72 (ddd, 7.9, 5.4, 5.4)
	3	33.2 (t)	1.71 (m)		3	33.2 (t)	1.70 (m)
			1.87 (m)				1.87 (m)
	4	30.5 (d)	2.38 (ddd, 13.7, 11.2, 6.2)		4	30.5 (t)	2.42 (ddd, 13.7, 11.0, 6.4)
			2.59 (ddd, 13.7, 11.2, 4.3)				2.62 (ddd, 13.7, 11.0, 4.3)
	5	131.0 (s)			5	131.0 (s)	
	6	130.3 (d)	6.89 (d, 2.4)		6, 10	129.0 (d)	6.98 (d, 8.2)
	7	123.7 (s)			7, 9	115.1 (d)	6.66 (d, 8.2)
	8	153.6 (s)			8	155.5 (s)	
	9	114.4 (d)	6.66 (d, 8.1)		NH		8.93 (d, 4.6)
	10	126.2 (d)	6.80 (d, 8.1)		OH		9.18 (br s)
	7-Me	16.0 (q)	2.08 (s)	Ile	1	172.7 (s)	
	NH		8.89 (d, 4.8)		2	56.6 (d)	3.97 (dd, 8.5, 7.3)
	OH		9.18 (br s)		3	35.7 (d)	1.78 (m)
Val	1	172.2 (s)			4	24.7 (t)	1.14 (m)
	2	58.0 (d)	3.91 (dd, 8.7, 7.1)		5	10.3 (q)	0.82 (t, 7.3)
	3	30.3 (d)	1.97 (m)		6	14.9 (q)	0.88 (d, 6.4)
	4	19.2 (q)	0.92 (d, 6.6)		NH		6.97 (d, 7.3)
	5	18.9 (q)	1.02 (d, 6.7)	Lys	1	172.1 (s)	
	NH		6.97 (d, 7.1)		2	54.7 (d)	3.94 (ddd, 6.6, 6.6, 4.3)
Lys	1	172.2 (s)			3	31.7 (t)	1.61 (m)
	2	54.7 (d)	3.94 (ddd, 6.7, 6.7, 4.4)		4	20.3 (t)	1.15 (m)
	3	31.7 (t)	1.62 (m)				1.29 (m)
	4	20.3 (t)	1.15 (m)		5	28.1 (t)	1.43 (m)
	_		1.30 (m)		6	38.2 (t)	2.80 (m)
	5	28.1 (t)	1.43 (m)				3.57 (dddd, 13.5, 8.7, 8.7, 4.2)
	6	38.3 (t)	2.80 (m)		α-NH		6.47 (d, 7.3)
			3.58 (dddd, 13.3, 8.6, 8.6, 4.1)		ϵ -NH		7.14 (m)
	α-NH		6.49 (d, 7.1)	Arg	1	174.1 (s)	
	€-NH		7.20 (m)		2	51.8 (d)	4.10 (ddd, 7.6, 7.6, 5.1)
Arg	1	174.2 (s)			3	29.4 (t)	1.52 (m)
	2	52.0 (d)	4.09 (ddd, 8.1, 8.1, 4.9)			04.0 (3)	1.69 (m)
	3	29.2 (t)	1.53 (m)		4	24.9 (t)	1.46 (m)
		07.0 ()	1.70 (m)		5	40.3 (t)	3.08 (m)
	4	25.0 (t)	1.48 (m)		6	156.7 (s)	
	5	40.3 (t)	3.09 (m)		α-NH		6.43 (d, 8.2)
	6	156.8 (s)			δ -NH		7.57 (t, 5.9)
	α-NH		6.43 (d, 8.3)		CO^{b}	157.1 (s)	
	δ -NH		7.61 (t, 5.8)				
	CO^{b}	157.3 (s)					

Table 1. ¹H- and ¹³C-NMR Assignments for Anabaenopeptins E (3) and F (4) in DMSO- d_6

^a Multiplicity and assignment are from HMQC experiment. ^b Ureido carbonyl group.

Anabaenopeptin F (4) was also isolated as a colorless, amorphous powder: $[\alpha]^{20}_{D}$ –41.4° (*c* 0.1, MeOH); UV (MeOH) λ max (log ϵ) 279 nm (3.19). The molecular formula of 4 was deduced as C42H63N10O9, which was identical with 3, by HRFABMS $[m/2851.4810 (M + H)^+$ Δ +3.1 mmu] and NMR spectral data. Amino acid analysis of the acid hydrolysate of 4 revealed the presence of one residue each of Phe, Ile, Lys, Arg, and two unknown amino acids. A detailed analyses of ¹H-¹H COSY, HMQC, and HOHAHA spectra revealed the presence of the MeAla and homotyrosine (Hty) and led to the complete assignment of the ¹H- and ¹³C-NMR resonances of the six amino acid residues of 4 (Table 1). The amino acid sequence of **4** was determined to be cyclo-(Phe-MeAla-Hty-Ile-Lys) by the interpretation of interresidue HMBC and NOESY correlations (Figure 1). The HMBC and NOESY correlations observed between

Lys and Arg established the whole structure of **4**. The difference between **4** and **3** was that **4** had Hty and Ile instead of Mhty and Val found in **3**.

The absolute stereochemistries of Phe, Val, and Ile in **3** and/or **4** were determined to be L and that of Lys to be D by chiral GC analysis of *N*-trifluoroacetyl isopropyl ester derivatives of the acid hydrolysate. MeAla and Arg were determined to be L by Marfey's method.⁷ The absolute configurations of the Mhty and Hty residues remain to be determined.

Anabaenopeptins E and F are unique cyclic peptides having an unusual ureido bond and 7-Mhty or Hty residues. Cyclic peptides with a ureido linkage have been isolated from the cyanobacteria *Anabaena flosaquae*¹ and *O. agardhii.*⁸ Keramamide A⁹ and konbamide,¹⁰ which also contain a ureido group, were isolated from the Okinawan marine sponge *Theonella* sp., and the authors speculated that these unique peptides might be produced by symbiotic microorganisms such as microalgae, bacteria, or fungi. The fact that *O. agardhii* produces anabaenopeptins E and F, closely related to keramamide A and konbamide, provides additional evidence that cyanobacteria might be the source of these compounds.

Experimental Section

General Experimental Procedures. NMR spectra were recorded on either a JEOL JNM-A600 or JEOL JNM-A500 NMR spectrometer using DMSO as solvent at 27 °C. 1H- and 13C-NMR chemical shifts were referenced to solvent peaks: δ_H 2.49 and δ_C 39.5 for DMSO-d₆. FABMS spectra were measured by using glycerol or polyethyleneglycol as matrix on a JEOL JMS SX-102 mass spectrometer. Amino acid analysis was carried out with a Hitachi L-8500A amino acid analyzer. HPLC was performed on a Shimadzu LC-6A liquid chromatograph with ODS L-column (10 \times 250 mm, Chemicals Inspection and Testing Institute). Chiral GC experiments were performed on a Shimadzu GC-9A gas chromatograph fitted with an Alltech Chirasil-Val capillary column (25 m \times 0.25 mm) with a flame ionization detector (FID). The oven temperature was increased from 80 to 200 °C at a rate of 4°/min. Optical rotations were measured on a JASCO DIP-1000 digital polarimeter. UV spectrum was measured on a Hitachi 330 spectrometer.

Culture Conditions. *O. agardhii* (NIES-204) was obtained from the NIES collection (Microbial Culture Collection, the National Institute for Environmental Studies, Japan) and cultured in 10-L glass bottles containing CB medium.¹¹ Cultures were illuminated on a 12 L:12 D cycle at an intensity of 250 μ E/m²·s from fluorescent tubes and aerated with filtered air (0.3 L/min, without added CO₂) at 25 °C for 10–14 days. After incubation, cells were harvested by continuous flow centrifugation at 10 000 rpm. Harvested cells were lyophilized and kept in a freezer at –20 °C until extraction.

Extraction and Isolation. Freeze-dried cyanobacterium (138 g from 400 L of culture) was extracted three times with 80% MeOH and concentrated to give a crude extract. This extract was partitioned between Et₂O and H₂O. The H₂O-soluble fraction was further partitioned between *n*-BuOH and H₂O. The *n*-BuOH layer was subjected to ODS flash chromatography and eluted with aqueous MeOH and CH₂Cl₂; 60% MeOH fraction (617 mg) was resubjected to ODS flash chromatography and eluted with 50, 60, 70, 100% MeOH, and CH₂Cl₂; 70% MeOH fraction was concentrated under reduced pressure to give bright yellow solid (312 mg). Final purification was achieved by reversed-phase HPLC on a ODS L-column (linear gradient of CH₃CN in H₂O containing 0.05% TFA, 30% to 80%; flow rate 2.5 mL/min; UV detection at 210 nm) to yield anabaenopeptins E (3, 24.5 mg, 0.018% yield, dry wt) and F (4, 8.9 mg, 0.006%) along with the known compound, anabaenopeptin B (2, 212.6 mg, 0.15%).

Anabaenopeptin E (3): colorless powder; $[\alpha]^{20}_{\rm D}$ -52.7° (*c* 0.2, MeOH); UV (MeOH) λ max (log ϵ) 280 nm (3.25); FABMS m/z 851 (M + H)⁺, 849 (M - H)⁻, 675 (M - Arg - H₂O - H)⁻; HRFABMS m/z 851.4763 (M + H)⁺ calcd for C₄₂H₆₃N₁₀O₉ (Δ -1.8 mmu); For ¹H and ¹³C data, see Table 1. **Anabaenopeptin F (4):** colorless powder; $[α]^{20}_D$ –41.4° (*c* 0.1, MeOH); UV (MeOH) λ max (log ϵ) 279 nm (3.19); FABMS *m*/*z* 851 (M + H)⁺, 849 (M - H)⁻, 675 (M - Arg - H₂O - H)⁻; HRFABMS *m*/*z* 851.4810 (M + H)⁺ calcd for C₄₂H₆₃N₁₀O₉ (Δ +3.1 mmu); For ¹H and ¹³C data, see Table 1.

Amino Acid Analysis. Compounds **3** and **4** (100 μ g each) were dissolved in 6 N HCl (500 μ L) and sealed in separate reaction vials. The vials were heated at 110 °C for 16 h. The solution was evaporated in a stream of dry nitrogen with heating and redissolved in 0.1 N HCl in preparation for amino acid analysis.

Chiral GC Analysis of Amino Acids. A solution of 10% HCl in isopropyl alcohol was added to each of the hydrolysates of 3 and 4 in reaction vials and heated at 100 °C for 30 min. The solvent was removed in a stream of dry nitrogen. Trifluoroacetic anhydride (300 μ L) in CH₂Cl₂ (300 μ L) was added to the residues, the vials were capped, and the solution was heated at 100 °C for 5 min and evaporated in a stream of dry nitrogen. The residues were dissolved in CH_2Cl_2 (500 μ L) and immediately analyzed by chiral GC using a Chirasil-Val capillary column with a FID. Column temperature was kept at 80 °C for 3 min and then increased at a rate of 4°/min to 200 °C. Retention times (min) of standard amino acids were found as follows: D-Val (7.92), L-Val (8.68), D-Ile (9.97), L-Ile (11.02), D-Phe (21.75), L-Phe (22.63), D-Lys (32.66), L-Lys (33.21).

Marfey Analysis of Amino Acids. A 100- μ g portion of **3** and **4** was dissolved in 6 N HCl (500 μ L) and heated at 110 °C for 16 h. After removal of HCl in a stream of dry nitrogen, the residues were treated with 10% Me₂-CO solution of 1-fluoro-2,4-dinitrophenyl-5-L-alanine amide (L-FDAA, Marfey's reagent) in 1 M NaHCO₃ at 80–90 °C for 3 min followed by neutralization with 50 μ L of 2 N HCl. The reaction mixtures were dissolved in 50% MeCN and subjected to reversed-phase HPLC: column, Cosmosil MS (Nacalai Tesque Co., 4.6 × 250 mm), gradient elution from H₂O/TFA (100:0.1) to MeCN/ H₂O/TFA (50:50:0.1) in 50 min, UV (340 nm). Retention times (min) of derivatized amino acids were found as follows: L-MeAla (31.6), D-MeAla (34.0), D-Arg (44.4), L-Arg (46.5).

Acknowledgments. This work was partially supported by a Grant-in-Aid for Scientific Research from the Ministry of Education, Science, Sports and Culture of Japan.

References and Notes

- Harada, K. I.; Fujii, K.; Shimada, T.; Suzuki, M. Tetrahedron Lett. 1995, 36, 1511–1514.
- (2) Shin, H. J.; Murakami, M.; Matsuda, H.; Yamaguchi, K. *Tetrahedron* 1996, *52*, 8159–8168, and references cited therein.
 (3) Murakami, M.; Shin, H. J.; Matsuda, H.; Ishida, K.; Yamaguchi,
- (3) Mulakani, M., Sini, H. J., Matsuda, H., Ishud, K., Fahlaguch, K. *Phytochemistry* **1997**, in press.
 (4) Bax, A.; Subramanian, S. J. *J. Magn. Reson.* **1986**, *67*, 565–
- (4) Bax, A.; Subramanian, S. J. J. Magn. Reson. **1960**, *07*, 505– 569.
- (5) Bax, A.; Summers, M. F. J. Am. Chem. Soc. 1986, 108, 2093– 2094.
- (6) Bax, A.; Davis, D. G. J. Magn. Reson. 1985, 65, 355-360.
- (7) Marfey, P. Carlsberg Res. Commun. 1984, 49, 591–596.
 (8) Sano, T.; Kaya, K. Tetrahedron Lett. 1995, 36, 5933–5936.
- (9) Kobayashi, J.; Sato, M.; Ishibashi, M.; Shigemori, H.; Nakamura,
- (i) Itody John, V. J. Chem. Soc. Perkin Trans 1 **1991**, 2609–2611.
- (10) Kobayashi, J.; Sato, M.; Murayama, T.; Ishibashi, M.; Wälchi, M. R.; Kanai, M.; Shoji, J.; Ohizumi, Y. J. Chem. Soc., Chem. Commun. 1991, 1050–1052.
- (11) Watanabe, M. M.; Satake, K. N. In *NIES-collection. List of Strains*; Watanabe, M. M., Nozaki, H., Ed.; National Institute of Environmental Studies: Tsukuba, Japan, **1994**; p 30.

NP960597P